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2-D/Axisymmetric Formulation of

Multi-dimensional Upwind Scheme

William A. Wood* and William L. Kleb*

NASA Langley Research Center, Hampton, VA 23681

A multl-dlmenslonal upwind dlscretlzatlon of the two-dlmenslonal/axlsymmetrlc

Navier-Stokes equations is detailed for unstructured meshes. The algorithm is an ex-

tension of the fluctuation splitting scheme of Sidilkover. Boundary conditions are im-

plemented weakly so that all nodes are updated using the base scheme, and eigen-value

limiting is incorporated to suppress expansion shocks. Test cases for gach numbers rang-

ing from 0.1-17 are considered, with results compared against an unstructured upwind

finite volume scheme. The fluctuation splitting inviscid distribution requires fewer op-

erations than the finite volume routine, and is seen to produce less artificial dissipation,

leading to generally improved solution accuracy.

Nomenclature

A Flux Jacobian

.4 Auxiliary variables flux Jacobian

B Axisymmetric source term

C/ Skin friction coefficient

Cp Pressure coefficient

D Linearity preserving matrix

E Total energy
F Flux function

H Total Enthalpy

M Upwinding matrix
P Pressure

Q Limiter ratio
R Gas constant

Re Reynolds' number
S Area

T Temperature
U Conserved variables

V Primitive variables

F Projected velocity
W Auxiliary variables

X Eigen-vectors

X Auxiliary variables eigen-vectors
Z Parameter vector

a Sound speed

Cp Specific heat
e Internal energy

Length

n, t Normal/tangential vectors

q Heat-transfer rate
r Position vector

t Time
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Velocity components
Cartesian coordinates

Generalized integration surface

Eigen-values

Generalized integration volume

Finite volume artificial dissipation

Curvilinear advection speeds
Incremental amount

Ratio of specific heats

Thermal conductivity

Coefficient of viscosity
Fluctuation

Limiter function

Density
Shear stress

Finite element shape function

Axisymmetric switch
Curvilinear coordinates

Superscripts:

i Inviscid

v Viscous

T Transpose

x,y,_,n Spatial component of a vector
* Second-order fluctuation

t Fluctuation splitting artificial dissipation

Subscripts:

0 Current node

Freestream

o Stagnation value

Wall

R,L Right/left

T Triangle

i,j,k Indicies
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Notation: The inviscid and viscous fluxes are,

AOA Angle of attack
COE Contributions from other elements

LHS Left-hand side

RHS Right-hand side
V Gradient

A Backward difference

c Permutation operator

Bold indicates vectors of the system of equations.

The vector symbol,, indicates spatial vectors. Tilde

quantities are Roe-averaged, while the overbar is for

linearly averaged quantities. Hats denote unit vectors.

The breve symbol, _, indicates quantities in auxiliary
variables. Subscripts of other variables indicate differ-
entiation.

Introduction

PWIND fluctuation splitting and finite volume
discretization schemes are detailed for the two-

dimensional and axisymmetric equations of motion for

a perfect gas on triangulated domains. Both the finite

volume and fluctuation splitting upwind schemes are
applied to the inviscid flux, while the viscous flux is

discretized with a scheme analogous to finite element.

Verification and validation of the schemes is per-

formed using the test cases and methodology of Shing-
hal 1 and Roache, 2 with examples ranging from the

incompressible flat plate to a Mach-17 cylinder.

New contributions include the axisymmetric for-

mulation of the upwind fluctuation splitting distribu-

tion, the proper form for eigen-value limiting for this
scheme, the head-to-head comparison of finite volume

and fluctuation splitting, and the application of fluctu-

ation splitting to a hypersonic heat-transfer validation
test.

Formulations

The Navier3-Stokes 4 system of equations can be

written in two-dimensional or axisymmetric non-
dimensional form as,

_i = puV + (1,0)P

IPvV + (0, 1)P (4)

\ pCH

with the shear-stress tensor defined,

The inviscid and viscous axisymmetric source terms

each have only one non-zero term,

•= P, -

The governing equations are discretized using two

different, second-order node-based schemes for un-

structured (triangulated) meshes. The popular
Barth 5, 6 finite volume scheme is chosen as the baseline

for comparison. The other scheme is the multi-dimen-

sional-upwind fluctuation splitting discretization due

to Sidilkover, 7 9 extended here to include eigen-value

limiting, axisymmetric terms, and both thin-layer and
full Navier-Stokes viscous terms.

State Vector

In the finite volume context, integration of the de-
pendent variables over the control volume about node i

is performed as,

_ uJaU t d_ = _aSiUi_ (8)
i

For two-dimensional _a -- 1, while for axisymmetric

_a can be either taken as _a = Yi, for mass-lumping

to the node, or as the y-value of the centroid of _i.

In the fluctuation splitting context, the parameter
vector is taken to vary linearly over each element. For

a perfect gas, changes to the conserved variables can

be related to changes in the parameter vector as,

:vaUt + V. (:vaF i) = V" (:vaF v) + :vB i - :vB v (1)

where w is a logical switch between two-dimensional

(w = 0) and axisymmetric (w = 1) equations and,

TiP"a ---- 1 - w + wy (2)

is 1 for two dimensions and y for axisymmetric.

The conserved state vector is,

u = (p, pu, pv, pE)T (3)

Vz z

dU = Uz dZ (9)

oo
Z 2 Z 1 0 (10)
Z 3 0 Z1

1Z4 _Z2 _Z3 1Zl

Integration of waUt over an element leads to a mass
matrix,

_T:_aUtd_:_Ti_aUzZtd_ (11)
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If mass-lumping to the nodes is employed, introduc-

ing temporal, but not spatial, errors, Eqn. 11 can be

partitioned among the three nodes defining _ as,

3

£_YaUtd_ :@EUJaiUit (12)

i=1

so that the sum of all contributions to node i equals w

_Yai SiUit.

Axisymmetric Sources

In the finite volume framework, the inviscid axisym-

metric source term, B i, is simply evaluated at the node

as,

£ Bi d_ = sin} (13)
J

While some authors insist on upwinding source

terms for fluctuation splitting, s' 10 the present analysis

considers an upwind distribution to be inappropriate

for the axisymmetric source terms, which arise from

purely geometric manipulations. The axisymmetric
source term can be distributed to the node in the fluc-

tuation splitting framework following a mass-lumped

analogy as,

ZUajSjUjt +" z_ySjB} (14)

which is equivalent to the finite volume treatment of

Eqn. 13. A modification of this distribution is to send

contributions weighted by the averaged values,

_Yaj SjUj_ +-- _Bi m + COE (15)

A more rigorous treatment integrates the source

term analytically, based on a linear variation of the

parameter vector. The only non-zero inviscid source
term is,

B_ =P-7-1(7 Z 1Z 4 Z2-_ Z2)- (16)

The integration over the triangular element is divided u - --

into thirds along the median-dual boundaries, as in
Figure 1, so that,

_'_ ---- _'_1 ÷ _'_2 ÷ _'_3 (17)

The subintegrals are then distributed to the nearest

node. Notice that the subdivided integration elements, with,
_1-3, are quadrilaterals, whereas the original element

was a triangle. The distribution formula is thus,

+-- _y f B i d_j + COE (18)sjuj UJaj

Jf_ J X =

The integration of the source term over _j is expanded
in detail in Ref. 11.

1

Fig. 1 Subdivision of triangular element into three
quadrilateral integration areas. Dashed lines are
the median-dual mesh.

The viscous axisymmetric source can be integrated
using the Haselbacher 12 thin-layer approach (detailed

in the following viscous flux section) as,

_ B_df_ - 4 £ #Vdf_- 2--_r #V._dF3R_ _ y 3R_

(19)

Mass lumping to the node for the first term yields,

f_ _ d_ = PiSi viYi
(20)

while the second term is evaluated at edge midpoints.

Inviscid Flux

The finite volume discretization of the inviscid flux

is performed as an average of the fluxes to the le£ and

right of the control volume face, times the parameter

wa (equal to 1 for two-dimensional or the y-value of

the quadrature point on the face for axisymmetric)
plus the artificial dissipation, which is defined as,

¢ =  l .fil(UR - u.) (21)

where by convention the right state is to the outside of
the control volume while the left state is to the inside.

The parameter vector, Z -- vffi [1, u, v, H] T, is
1 (Z L ÷ ZR), to provide thelinearly averaged, Z --

quantities,

22 23 /_ = 24 (22)
- 21' v = Z' Z=_

and the Roe-density is,/5 = pvf_.
The projected flux Jacobian is decomposed as,

IA.fil = 5¢1_&15¢-1 (23)

A = diag (F, F, F + a, F - a) (24)

[i0--?'t y it ÷ art x it -- art x

(25)
n × v÷an y v-anY|

vn × - un y H + aF H - aFJ
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Theproduct X-I(UR -- UL) is expressed,

1 252 (n×dv - nYdu)l
X-ldU = _ dP + p_dF ] (26)

/

dP - _ dF ]

where the projected velocity is F = V.fi and the aver-

aged speed of sound for a perfect gas is,

52 =(7-1) H +v2 (27)
2

Integration of the inviscid flux for fluctuation split-

ting is performed as,

(28)

The y-component of the flux function can be written
in terms of the parameter vector as,

• Z2 Z3

F_' Z 2 -4- _- ZI Z4 -
= "7--1 Z2__Z 2 (29)

Z3 Z4

A linear variation of the parameter vector over a tri-

angular element can be represented as,

1

Z(x, y) = _ijkzj (30)
•[(x- xi)(yk - y_)+ (y - y_)(x_- xk)]

where 5ijk is the cyclic-permutation summation oper-
ator. The linear variation can also be written in the

element-local (_, 7) coordinates, referring to Figure 2,

as,

1 (Z2 - Zl)_ + 1
Z(_,/_) ---- Z 1 + _3 _--(Z3 -- Z2)/_

1 _1 Vl (31)

The domain is on 0 _ _ _ _ and 0 _ _ _ _3. The
cartesian coordinates map similarly,

X(_,?_) =Xl'-_- 1A_x_'-_- _A,x?_ (32)
_3

Some general integration rules can be developed for

linear variations over the triangular elements:

V

Fig. 2 Elemental triangular domain for fluctuation
splitting.

The cell-averaged value is,

;_ Xl + X2 + X3 1 3
-- 3 --3 Exj (37)

j=l

The last term of Eqn. 28 is distributed to the nodes

in a manner similar to the source term,

SiUit _ --UJ f F iy d_i -4-COE (38)UJa_

J_ i

This integral can be evaluated exactly as,

sT[Z1Z 3 d_ i = _ 1421Z3 + 11(Z1_Z3 + 21Z3_)
i

+ 9Zl_Z_ + Z Zl_Z_ (39)
j=l !

for the continuity equation. The integrals for tt_e other

governing equations follow directly from Eqn. 39.

The remaining term to evaluate in Eqn. 28 is the

inviscid fluctuation,

_b = - _ _a_7"F i d_

_1_3 _ _"-- 2ST 7:Ua (?_I'F_- ?_3"F/_) dgt (40)

-- 2ST1 f_ Wa (_ini.FzA_Z- _3n3.FzA_Z)dgt

where dl_i = Fz dZ and,

Z2 Z1 0 0

_x _Z4 _-_2_/_- 1 r2" - _/-1 Z3_/ _Zi
F Z ---

f_ 0 z3 z2 0d_ = ST (34) 0 24 0 22

_xd_=ST_2 (35) _ _-- [ _3 Z30 Z2Z1 00

110- -1 3 F_ _
_ _- 5 x_y_ (36) z4 -_z_ _Zl

---- ST:_/- _- 0 24 2 3

(41)

(42)
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The integration rule Eqn. 36 allows for the direct eval-

uation of Eqn. 40 as,

1 [(_------_a_lnl" _Z--_ --i += _a-a _Zj A_Z

1
-_- _a_37_3

[ 1 (_z lj_1_ 4 3 .= Wa )]

"CD'aj ._

(43)

Noting that _ = _z Z O and,

Zu

1

2v_ 1 0 0!]-u 2 0

-v 0 2

--HA-(_/--1)(u2A-v 2) --2(_/--1)u --2(_/--1)v 2"/

(44)

with the tilde-averaged quantities defined as,

O =U(Z), A_U=U2A_Z, A,U=U2A, Z (45)

leads to the fluctuation expressed as,

1 [ I(A(_ ---- --_a_lnl • _k -- _ -- i "= _a J

1 [ 1 (_t_l 3 _j_._] _

= ¢_ + ¢' (46)

Equation 46 includes the approximation,

/kj _ FzjZ 0 (47)

A transformation of variables can be made to the

auxiliary variables so that,

¢ = Ow_ (48)

with,

Ii°°1 0 _u (49)
Uw = 0 1 _v

1 ToI
U V _/--1 T-]

Similarity transformations lead to,

(_ ---- --2 _ael?_l. ¢_-- 4 i .= _a :?

[_--1 (fit--lj_lWaJ_"1__a_ 7 5 = _a+

with _ = Wufi_Uw and,

A_W =W 0A_U=W 2A_z

A,W =W 0A,U=W 2A,Z

where,

WU =

A_W

A,W

(50)

(51)

(52)

2 _ _ _ --

[ _ 1 0
- 0 1

_ V2 -(7-1)u -(7-1)v 7-1J

(53)

Wz = v_

- 1 0

-_ 0 1

_-_-_v _j

L[2Z1 -- _Z4 _Z2 _21Z3 _Z1

--- / --Z2 Z1 " 0

--Z 3 0 Z1

Z4 _/_ -1Z2 -_ Z3 _ ZI J

using the relation,

h = cpT -
a 2

7-1

The projection of fit has the simple form,

(54)

(55)

[ oof_._ = 0 V 0 n x (56)
0 "P

a2rt x a2rtY

where the projected velocity is F = _.V. The gener-

alized advection speeds are,

hi" [ 1(_4 l_l'lYiTajA')] (57)"_-7 -5.: _aC_

_3^ [_[ 1 (_[ lj_lVCraj_[.)] (58)fl = --_-n3" 4 -- 5 .: _a
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where the approximation Aj = WSXjOw has been

incorporated.

Linearity preservation for second-order spatial ac-

curacy is obtained by limiting the fluctuations compo-
nentwise,

@" = 4_. - 4_. ¢(Qj) = 4_ (1 - ¢ (Qj)) (60)

where the second equalities hold for symmetric lim-

iters. The limiting ratio is,

¢_ (61)
Qj = _,

Cj

In vector form, Eqns. 59 and 60 can be written,

with

_*' = D_ _ (62)

_*" = D'_' (63)

D _ = diag (1- ¢ (_jj)) (64)

D v = diag (1 - ¢ (Qj)) (65)

Upwinding is achieved through the introduction of

artificial dissipation

_b -- sign(_)_b -- -_aMaD_M_ 11o_1A_W (66)

q_" -- sign(_)q_ -- -_aMgDVM_II_I A_W (67)

where M_ = sign(s) and M 9 = sign(_). The ab-

solute values of the generalized advection speeds are

developed using the following decomposition, which is
exact for the two-dimensional equations but approxi-

mate for the axisymmetric form,

where A remains as in Eqn. 24 and,

which for I1)_ I > 5 leads to,

and for I1)_ I < 5,

-sign0)a)

0
Ma =

0

0

M_ = sign0)_)I (73)

0 0 !]n_2sign (_)a) -n_ n_ sign (_)a)

_n_ n_sign0)_) x: . -n 1 slgn()2a)

(74)

where )2_ = Tt1.V. Similarly, defining 1131as,

for 11)91> 5 leads to,

and for 1_)91 < 8,

-sign0)9)

0
Mg=

0

0

(75)

M 9 = sign0)9)I (76)

o]0 0 0

n_2sign0)9)-n_n_sign0)9) _-

_n_n_sign0)9) x_ . -n3 sign()29) n_

(77)

where )29 = fi3"l?. M_ and M 9 have the property,

M_ 1 = Ma M_ 1 = M 9 (78)

Eigen-value limiting for the suppression of expansion
shocks can be introduced into Eqn. 70. If the limited

eigen-value is expressed as,

IAlum =IAI+SA (79)

i 0 0;]X = 0 fly fix
-fix fi y ^ (69)

o a 2]
The absolute value is then defined as,

Expressions for the sign of

wavespeeds are developed from,

=

the

M_ = ,'_lJikli-l,_ -1

(70)

generalized

(71)

(72)

then the additional artificial dissipation for eigen-value

limiting in the _ direction to be added to Eqn. 66 is,

1 ((_A3 -4- (_A4) and 6- 1with 6+ = _ = _ (6A3 -- 6A4),

--_a 2

SA_ 0 0 0 1n I -_-

x_ nYl_5+ -__5_ I

an_ 5- anYl 5- 5+ J

• w (8o)

while the eigen-value limiting in the _ direction takes
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the form,

_3

+ _a_"

0 2 0 __a06_5A_o n_25 + + nY3 5A2 n_nY3(5 + - 5A2)

,0 _ ×2 ny26+ _6_n_n y (6 + 6A2) n 3 6A2 "_-

Lo an_5- any 6- 5+ J

• A_ W (81)

The fluctuation is distributed to the nodes using,

SIUlt

$2U2_

$3U3_

+- _(¢ -¢")+coE

1 ,( _(¢*" + ¢") + COE+- 5(¢ +¢")+

_- _(¢*_ - ¢'_) + COE (82)

where COE stands for contributions from other ele-

ments. The distribution can be expressed in a more

compact form,

1 [i(3 - i)(¢*' + (-1)i¢ '')

+ (-4 + 5i _ i2)(¢,, + (-1/¢'")]

+ COE i = 1,2,3

(83)

where Eqn. 48 is used to define,

¢*_ i_lw_ *¢ _ ,_= , ¢" = Uw¢ (84)

¢*_ OwS, = - _ '_= ¢'" Uw¢ (85)

Viscous Flux

Viscous terms are discretized using a non-upwind

fluctuation splitting formulation, which is equivalent

to a finite element discretization using mass-lumping

to the nodes. Both the finite volume and the upwind

fluctuation splitting inviscid discretizations have been

shown by the authors 13 to be compatible with this

viscous treatment for scalar equations.

Integrating the viscous flux over a triangular ele-

ment leads to the viscous fluctuation,

Cv = £ _.(_a_V) da (86)

The nodal distributions are developed in a finite ele-

ment sense by integrating by parts,

_v = _F viuJaFV.ndF- _ uJaFV'_vi d_ (87)

For interior nodes the boundary integral in Eqn. 87

will sum to zero and the volume integral is integrated

analytically for a linear variation of the parameter vec-

tor,

3

VZ - 2ST1 E ZffJfiJ Vvi - £ini2ST (88)
j=l

¢i - 2ST 2
(89)

Struijs et a114 have shown that derivatives of primi-

tive variables can be consistently represented in terms

of the parameter vector gradients as,

VV = V 2 VZ (90)

where,

2Z1 0 0 ! ]

1 0
Vz = [_z_ z_ (91)

10
L_ Z4 --7-1Z2'7 --_-1Z37 _ zl

and,

_z = v(z) =

212

Z_2

Z1

2_3

Z1

1 (22 ___ 22)][Z124 -

(92)

Further, the consistent temperature gradient is,

_-_ VP PVp_ 1 ( _p)VT - _R _R R_ __- P (93)

The viscous fluctuation is then distributed to the

nodes,

SiUi t +__ _)v ___ COE (94)

An alternate approach to integrating the viscous

flux is obtained by using the divergence theorem,

_.(v:Ta_v) df_ = _F waF_'fi dF
i i

(95)

where fh is the generalized control volume containing

node i, with two-dimensional area equal to Si, and Fi

is the boundary of fh.

Haselbacher et a112 have recently presented an ap-

proximate treatment for integrating Eqn. 95 on two-di-

mensional unstructured grids, which they relate to the

thin-layer approximation of the Navier-Stokes equa-

tions presented by Gnoffo 15 for structured grids. The

method preserves positivity for the Laplacian and is

transparent to grid topology.
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The development begins with the expression,

1
fv.ft _

Re_  v.ft + + ]
+ ]

(96)

where [ is a tangent vector with components (-n y, n×).

Haselbacher's approximation neglects all tangential
terms and approximates V. V _- n×Vu •ft + nYVv •ft.

Using the notation un = Vu.ft, etc., and including the

axisymmetric terms gives the approximation,

_ V
V.V -_ V_.ft + w- (97)

Y

leading to,

- ( )/+ + Sft +n y

(9s)

t
/

sX_ mesh

Interior : \\\\ 0/

Exterior • •

• =Boundary state, _ = Reconstructed state

Fig. 3 Weak implementation of finite volume
boundary condition for node 0, imposed by spec-
ifying external state. Quadrature points denoted
by X's.

Interior nol
0 1

yoOll_b_o_,,, Exterior ......./'@
fll[]Ab_,"_ ",, ......... /"

,"/ __ "'" ......... .] ,,'" fo, fl are fictitious
/1 bco "" ......... _ // nodes for sending

,// ....... ,, Abcl/: boundary fluctua-

/ f'"" ".. tions to nodes 0

/' .f" "'. // resp 1.

_)0 "_ fl

Fig. 4 Weak implementation of fluctuation split-
ting boundary condition, imposed by specifying
external state at ghost nodes fo, fl.

A further simplification aligns ft with the nearest

mesh edge for faces of F on the interior of the domain,

so that terms such as un reduce simply to the difference

in nodal values divided by edge length. Also, _ is

chosen to be the midpoint of the edge.

Including one more approximation, namely replac-

ing the length F of the median-dual face with the

length of the associated containment-dual face, has

the effect of canceling some of the errors for very

high-aspect-ratio cells introduced by assuming ft is

edge-aligned. For low-aspect-ratio cells, the contain-
ment dual is the same as the median dual and the true

ft is closely aligned with the mesh edge. This imple-
mentation is similar to the suggestions of both Barth 6

and Haselbacher, 16 yet retains the global median-dual

implementation required by a distribution scheme.

Boundary Conditions

Boundary nodes may be updated either strongly,

where the nodal solution values are simply assigned
a priori, or weakly, where the solution values at the

boundary nodes are relaxed in time using the same
formulations as for interior nodes.

For finite volume, the weak boundary implemen-

tation specifies the solution state to the outside of

boundary faces, then allows the approximate Riemann

solver to construct the appropriate fluxes through the

boundary faces. See Figure 3 for an illustration of the

weak finite volume boundary condition. The solution

state to the inside of the boundary face can be set from
either a first- or second-order reconstruction from the

node. For some cases, second-order reconstruction to

boundary faces has led to localized oscillations in the

solution convergence at boundary nodes.

Weak formulation of the fluctuation splitting bound-

ary condition is developed using fictitious "ghost"

nodes, one for each boundary node, as shown in Fig-

ure 4. Considering the scalar case, the positioning of

a ghost node such that the edge connecting the ghost

and boundary nodes is parallel to the advection veloc-

ity results in a boundary fluctuation of,

1
Obco = _01A'ft01(Uf0 - U0) (99)

for node 0 of Figure 4. Observe that this formulation is

independent of the physical location of the ghost node,

so the ghost node can be chosen to be infinitesimally

close to the boundary node it supports. The solution

state at the ghost node remains to be specified, and
can be varied node-to-node. The associated artificial

dissipation is,

Cbc0 = sign(A'ft0i)¢bco (100)

and the resulting distribution is,

1 i
SoUo_ +- _(¢b_o + ¢b_o) + COE (101)

Since no account of the ghost cell area is made in form-

ing the dual area on the LHS of Eqn. 101, a scale factor

on [1, 1] can be applied to the distribution.
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The extension to systems follows by analogy. The

boundary fluctuation is defined,

Both the full viscous flux and the approximate thin-

layer flux of Haselbacher reduce to,

_bco -- UJa° _01Abco'n01(Wfo -- W0)
2

with the artificial dissipation,

(102)

_tbco = sign(_tbco "n01)(_bco (103)

Additional dissipation for the suppression of expan-

sion shocks is added to Eqn. 103 following the form of
Eqns. 80 and 81 as,

[i 0 0 0]_01 n01o×2z+ n_ln_l (_+ _-al (_-

+ 7:Uao _- Tt_I Ttyl (_+ TtY_ (_ + _-al (_- i

an_l(_- an_l(_- 5+ J

• (Wso- w0) (104)

The distribution to the boundary node is then formed

as,

1 _,
SoU0_ +-- _Uw(_b¢o + q_b¢o) + COE (105)

This system treatment is only approximate, as the
cross-fluctuation does not vanish when V [[ foO, as in

the scalar case, but reduces to the term,

[i000]0 0 n ×/o

0 0 n_oa2n ×/o a2 n_o

(106)

Strictly, there should be some cross-coupling with the

neighboring boundary nodes. However including the

term from Eqn. 106 requires explicitly locating the

ghost nodes, which can be impossible for certain ge-
ometries.

The distribution to node 1 is formed analogously,
substituting 0 for 1 in Eqns. 99-106.

The freestream boundary condition is enacted by

specifying a complete, constant thermodynamic state

and velocity vector. By using the weak boundary en-

forcement, this one boundary condition covers the four

permutations of subsonic or supersonic, inflow or out-
flow.

The inviscid wall boundary is implemented by mir-

roring the primitive variables, either across the face for

finite volume or at the node for fluctuation splitting.

The axisymmetric axis is enforced by imposing zero

flux on the axis and using the control-volume centroid

for wa in Eqn. 8.

Viscous walls define a stagnant velocity and a spec-

ified wall temperature. The zero velocity at the wall

causes the viscous axisymmetric source to be zero.

- 1 [0,#V_,nT_] (107)

at a wall, since V, V.V, and Vn'n go to zero. Defining

the heat transfer into the wall according to Fourier's
law,

qw --

and the wall shear stress,

G-

t_

T_ (108)
Re_

# Vn (109)
Re_

allows the Eqn. 107 to be written as,

_v._ = _ [0, _w, qw] (110)

where the minus sign results from the choice of an
outward unit normal, fi, to the control volume, which

points into the wall at a boundary.

The solid wall is enforced weakly, by specifying the
wall shear that will drive the flow momentum to zero

and the heat flux that will drive the solution temper-

ature to the desired wall temperature. An advantage

of this weak approach is that wall heat transfer and

skin friction are solved for directly, rather than as a

post-processed least-squares reconstruction. Using an

explicit update, the wall heat flux can be isolated as,

1
[ 7:UaS (U4 -- U1 ¢(Tw)) --_ RHSi4 +_]

q_ -wa_F_ L At
.J

(111)

Similarly, the wall shear is,

_F_I k[WaS i+_] (112)_ - i_-(U2,U3) +RHS2,3
7:Ua

Temporal Evolution

Solutions at the nodes are updated using an explicit

forward-Euler LHS. A Jacobi relaxation strategy is

followed with either local time stepping or first-order

global time steps.
The CFL (Courant et a/17) criteria for explicit

schemes is adapted for use with the node-based un-

structured scheme. The inviscid timestep is defined

by the most restrictive time for signal propagation, at

the eigen-value speeds, between adjacent nodes,

At0 =min( lir'0iN )=min(r_oi'r_oi)\iv0. 0 i + a0 i¢0 + a0 l] 0 l]
(113)

where the current node is node 0 and i takes on nodal

values for each distance-one neighbor of the current
node.
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Fig. 5 Sample randomly distorted mesh used for
solver verification cases.

The viscous timestep restriction is taken to be an

approximation based upon the positivity analysis for

the scalar case, 13 assuming order-1 Prandtl number,

4SoPoR_ R
Ato : (114)

po(R + 7 - 1) ET

The stability and convergence of axisymmetric solu-

tions is found to be enhanced by scaling the timestep

for points near the cylindrical axis by the maximum

of either the node height or the square root of the
median-dual area.

The more restrictive of the inviscid or viscous

timestep is used to scale the nodal update.

Results

Verification of the complete solver is performed in

stages using a methodology derivative of Singhal. 1 A

variety of canonical cases are constructed, including

grid distortions, that are designed to exercise com-

binations of the various functions that comprise the

complete solver. Two viscous cases serve to validate

the solver against benchmark data.

Inviscid Verification

Distorted mesh

The first verification case simply passes a uniform
flow through a distorted grid, with success being the

preservation of uniformity to at least six significant

digits. The domain is initialized to stagnant condi-

tions with freestream flow impulsively applied at the

boundaries. A variety of flow angles were tested on

-180 ° < AOA < 180 ° for subsonic, transonic, and

supersonic Mach numbers. Regular, high aspect ratio

(100), skewed (2 ° < 0 < 175°), and randomly dis-

torted (Figure 5) meshes with 121 nodes were used.

Initial runs were instrumental in refining the treat-

ment of eigen-value limiting for fluctuation splitting.

State A

Mach -- 2.3

AOA = -I0 ° /State C

M2ch 171;...........
_34 ° State D

_ _ M_ch -- 1_45
State B _AOA = 0°
Mach = 1.8

AOA = 10o

Fig. 6 Description of converging-Mach-stream
problem. Flow from left to right_ with oblique
shocks_ solid_ and slip-line_ dashed_ emanating from
trailing edge of splitter plate.

All final runs were successful for both finite volume

and fluctuation splitting.

Converging Mach streams

Thermodynamic routines are verified by considering

converging Mach streams, inclined at 4-10% The up-

per stream is at Mach 2.3 while the lower stream has
Mach 1.8. The two streams have matched densities

but a temperature ratio of 1.0812, resulting in a hori-

zontal slip line behind the oblique shocks. A complete

description of the analytic solution appears in Figure 6
and Table 1.

A sequence of four meshes, with a refinement ratio

of 1.5, is considered. The meshes are triangulated from

16 × 16, 24 × 24, 36 × 36, and 54 × 54 grids. The tri-

angulated 16 × 16 grid is shown in Figure 7. The finer
meshes cover the same domain and are constructed

similarly to the shown mesh.

A Mach-number contour plot for fluctuation split-

ting on the finest mesh is shown in Figure 8, showing

crisp discontinuity resolution and the correct post-

shock Mach numbers. The shock angles for all eight

cases, i.e. finite volume and fluctuation splitting on

each mesh, are measured to be correct within 4-1%

The L2-norms of the primitive-variables error at states

C and D are plotted versus the characteristic mesh

size in Figure 9. The slopes of the regression lines

are indicative of the order of accuracy with respect to

grid convergence of the two schemes for this test case.

Table I Analytic thermodynamic states for con-
verging gach streams.

State p, kg/m 3 T, K P, kPa V, m/s

A 1.2 300 103.34 798.6

B 1.2 324.7 111.73 649.9

C 1.813 356.7 185.62 723.7

D 1.718 376.4 185.62 563.7
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Fig. 10 Convergence histories for converging

gach-stream case. Fluctuation splitting solid, fi-

nite volume dashed. Coarsest mesh on left, finest

on right.
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Fig. 8 Mach contours from fluctuation splitting

on finest mesh.
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Grid for diamond airfoil verification test.
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Fig. 9 Grid convergence rates for converging

gach stream case. Circles ---- fluctuation splitting,

squares ---- finite volume.

Finite volume exhibits second-order convergence, as

expected. Unexpectedly, fluctuation splitting shows

super-convergence for this particular case. True mul-

ti-dimensional upwinding is likely the source of the ex-

ceptional fluctuation splitting accuracy for this purely-

supersonic flow. Supplementing the graphical deter-

mination of the grid-convergence rates, the equations

presented by Roache, 2 based on a Richardson extrap-

olation, yield average grid-convergence rates of 3.0 for

fluctuation splitting and 2.1 for finite volume.

Temporal convergence rates are plotted in Figure 10,

with timings performed on an IRIS R10000 platform.

All cases were run using the Minmod limiter and a

Jacobi update strategy with local time steps. Fluc-

tuation splitting was run with a unity CFL number,

while best convergence for finite volume was found for

CFL--0.7. Fluctuation splitting runs at 145 ps per

node per iteration, while finite volume runs at 165 ps

per node per iteration.

Diamond airfoil

A verification of the inviscid wall boundary condi-

tion is performed on a diamond airfoil at zero angle

of attack and Mach 1.5. The flow deflection is five de-

grees. The grid is shown in Figure 11. A Mach-number

contour plot using fluctuation splitting is shown in Fig-

ure 12. The corresponding finite volume solution, not

shown, is visually indistinguishable from the fluctua-

tion splitting solution. The analytic drag coemcient,

based on chord length, is 0.02760. The fluctuation

splitting drag coefficient is 0.02638, for a 4.4 percent

error. The finite volume result has an error of 6.6 per-

cent from a drag coefficient of 0.02579.
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Fig. 12 Mach contours on diamond airfoil, M = 1.5,
fluctuation splitting solution.

Cone

The final inviscid verification is for an 11-degree

semi-vertex-angle cone at Mach 1.5. The well-

established Taylor-Maccoll is method for the conical

supersonic Euler equations predicts a drag coefficient,

based on base area with no base pressure, of 0.7795.

The fluctuation splitting solution, which converged

seven orders of magnitude in 38 seconds, predicts a

drag coefficient of 0.7785, for only a 0.13 percent er-

ror. The finite volume solution, which took 13 percent

longer at 43 seconds to reach seven orders of magnitude

residual convergence, predicts a 0.7754 coefficient, for

an error of 0.53 percent.

1

Y

Viscous Validation

Two canonical viscous validation cases are consid-

ered: a subsonic flat plate and a hypersonic cylinder.

Steady laminar solutions are obtained using the Hasel-

bacher thin-layer viscous treatment with containment-
dual modification.

-0.5 0 0.5 1 1.5 2
x

Fig. 13 Two-dimensional 10 percent circular-
bump mesh with isobars from fluctuation splitting
solution at Mach 0.1.

Circular bump

A subsonic two-dimensional verification is per-
formed on a 10 percent circular bump at Mach 0.1.
The 1389-node mesh with isobars from the fluctuation

splitting solution is shown in Figure 13. A true incom-

pressible inviscid flow would have symmetric isobars

fore and aft, and zero drag. The fluctuation splitting
drag coefficient, based on cord length is 0.0058. Finite

volume predicts a drag coefficient more than twice as

large, 0.0128. A lower fluctuation splitting drag coeffi-

cient is indicative of lower levels of artificial dissipation
in the solution for this case.

Sphere

In a similar vein, Mach 0.1 axisymmetric flow over a

sphere is tested on a 1369-node mesh. The drag coef-
ficient, based on frontal area, is 0.43 for finite volume

but 0.56 for fluctuation splitting. Contrary to expec-

tation, the increased artificial dissipation in the finite

volume solution creates enough of a total pressure loss

to nearly eliminate separation on the leeside, whereas

the leeside increase in pressure toward the centerline

in the fluctuation splitting solution does produce a siz-

able separation region, and in this case a larger drag

coefficient. As with subsonic bump case, true incom-

pressible, inviscid flow should theoretically produce

zero drag.

Flat plate

The classic Blasius 19 flat-plate boundary layer prob-

lem is solved on a rectangular domain. Mach 0.3

flow enters 2 units upstream of the plate leading edge,

which is located at the origin. The plate is 4 units

long, ending at an extrapolation outflow boundary.

The upper boundary is 1.2 units above the plate. The
Reynolds number is 104 .

The meshes are obtained from a structured grid con-

taining 37 equally-spaced points parallel to the plate,

12 points upstream of the plate and 25 points on the

plate, and 41 points normal to the plate. The ver-

tical grid spacing at the wall is 0.001 units with an

exponential stretching as described in Ref. 20, plac-

ing approximately 20 nodes within the boundary layer.
The unstructured mesh is formed from the structured

grid using diagonal cuts in an alternating pattern.

Two coarser meshes are similarly constructed by suc-

cessively deleting every-other node in the wall-normal

direction, leaving 10 and 5 nodes, respectively, in the

boundary layer for the medium and coarse grids.

Boundary layer profiles of u are extracted at x --

1, 2, 3 from both the fluctuation splitting and finite

volume solutions and plotted versus the Blasius solu-

tion in Figure 14. The boundary layer scaling variable
is defined as,

= y (115)

Both solution sets match the Blasius profile, indicating

well-developed flow with adequate grid resolution on
the finest mesh.

Figure 15 shows the effect of using the containment-

dual approximation in the Haselbacher thin-layer vis-

cous treatment. Boundary layer profiles of u are again

extracted at x = 1, 2, 3, with both solutions being run

with fluctuation splitting. Figure 15(a) is the same
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a) Fluctuation splitting, b) Finite volume.

Fig. 14 Boundary layer profiles of tangential velocity extracted from three stations on flat plate.
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a) Containment dual approximation.

Fig. 15
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b) Strict median dual implementation.

Boundary layer profiles computed using two different viscous dual mesh definitions.
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a) Fluctuation splitting.

as Figure 14(a), while Figure 15(b) uses the strict
median-dual definition for the viscous terms. For the

highly-stretched grid elements used in this case, it is

clear that the containment-dual approximation pro-

vides improved boundary-layer resolution, while omit-

ting the approximation leads to a profile that is "too
full."

The v-velocity profiles from the fluctuation splitting

and finite volume solutions are compared in Figure 16,

both extracted from the plate at x = 2. The fluctua-

tion splitting solution comes much closer to matching

the Blasius profile than the finite volume result. Ex-

cessive artificial dissipation is produced by the finite

volume scheme in the y-momentum equation, which

suppresses the v-velocity below the analytic value. The

artificial dissipation contributions to the y-momentum

equation are plotted for both fluctuation splitting and

finite volume in Figure 17. The vertical scale has been

enlarged by a factor of 30 to zoom in on the boundary

layer in Figure 17. Clearly, finite volume is producing

significantly more artificial dissipation than fluctua-

tion splitting over the length of the boundary layer.

For this essentially incompressible case, the suppres-

sion of the vertical velocity due to excessive artificial

dissipation is manifested by an increase in skin friction

coefficient, as shown in Figure 18, where the friction

coefficient increases with running length for finite vol-

ume, but not for fluctuation splitting. Recall that

finite volume is continuously producing artificial dissi-

pation over the length of the plate while the fluctuation

splitting dissipation is restricted to the leading-edge

region only. Figure 18 presents data from all three

-2 -1 0 1 2 3 4

x

b) Finite volume.

Fig. 17 Artificial dissipation production in the
y-momentum equation. Eleven contours spaced
equally on 0-0.0005.

grid refinement levels. The finite volume results de-

grade dramatically with coarsening of the mesh, but

the fluctuation splitting results remain relatively in-

variant with mesh resolution, all the way down to only

five nodes in the boundary layer.

The medium-mesh finite volume solution was re-

peated using the full Navier-Stokes treatment, rather

than the thin-layer equations. No change in the skin-

friction results are seen over the first half of the plate,

Figure 19, though there is an 8-percent improvement

toward the end of the plate. Solving for the full Navier-

Stokes terms requires 11 percent more CPU time per
iteration.

Cylinder

The opposite end of the Mach-number spectrum

is used to validate heat-transfer calculations, in this

case for a cylinder of 1 m radius in Mach 17.6 flow.

The perfect-gas assumption is a poor physical model

for these extreme conditions, V_ = 5 km/s, p_ =

0.001 kg/m 3, Too = 200 K, T_all = 500 K, but the
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Fig. 19 Effect of viscous modeling on skin friction.

case provides a severe test of the algorithms under a

re-entry scenario. Results are compared against the
LAURA 1s'21'22 benchmarks.* The LAURA code is

well-established as a structured-grid hypersonic solver.
Also included in the LAURA benchmark data is a solu-

tion using the unstructured-mesh finite volume solver
FUN2D. 23 The unstructured grid for this case was

obtained by simple triangulation of the LAURA grid,
which has 65 nodes perpendicular to the surface, clus-

*http://hefss.larc.nasa.gov

tered to the wall, and circumferential nodes spaced

every 3 degrees. Only the forward-half of the cylinder

is solved, as shown in the mesh and flowfield solution

of Figure 20.

The surface pressure coefficient is plotted versus ro-

tation angle from the stagnation point for both the

fluctuation splitting and finite volume solutions, along

with the LAURA and FUN2D results in Figure 21.

The LAURA, FUN2D, and fluctuation splitting curves

all over-plot, and the finite volume solution nearly

over-plots, being 1 percent low at the stagnation point

and slightly high by a similar amount 90 degrees away.

The calculations were repeated on a grid coarsened by
a factor of four (skip of two in both structured-grid

directions), with surface pressure results plotted in

Figure 22 along with the fine-mesh LAURA solution.

The coarsened fluctuation splitting surface pressures

retain good agreement, and the finite volume solution

matches over most of the cylinder, with minor excep-

tions again at the stagnation point, 1 percent high on

this grid, and at the 90 degree point.

Surface heat-transfer rates for LAURA, FUN2D,

and fluctuation splitting are shown in Figure 23. Both
of the unstructured-mesh solutions show elevated heat-

ing at the stagnation region, with fluctuation splitting

being 30 percent higher than LAURA while FUN2D

is 50 percent higher. Heating results for this case were

also obtained using a validated structured-mesh cou-

pled inviscid/boundary-layer code, with the solution

agreeing with the LAURA data.

The fine-mesh solutions were repeated using the full

Navier-Stokes treatment, and no changes in heating
levels were observed.

Concluding Remarks

A multi-dimensional upwind fluctuation splitting
scheme has been formulated for two-dimension-

al/axisymmetric viscous flows. A weak form of the
boundary conditions was proposed and the proper in-

corporation of eigen-value limiting derived.

While the scheme is formally second-order accu-

rate, super-convergent third-order behavior was seen

for a canonical verification test of converging super-
sonic streams.

The fluctuation splitting scheme produced more ac-
curate solutions for the inviscid diamond airfoil and

circular bump than a finite volume scheme. Para-

doxically, the excessive artificial dissipation produced

by the finite volume scheme actually led to a lower

drag than fluctuation splitting for the subsonic invis-

cid sphere case.

For the viscous flat plate, fluctuation splitting was

seen to produce more accurate solutions than finite

volume, due to the fluctuation splitting low levels of ar-

tificial dissipation. Also, fluctuation splitting showed

excellent skin-friction predictions on extremely coarse

meshes, while the finite volume results deteriorated
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Fig. 20 Hypersonic cylinder domain with fluctua-

tion splitting solution.
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Fig. 21 Cylinder surface pressures, solid = fluctu-

ation splitting, LAURA, and FUN2D, while dashed

---- finite volume.
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Fig. 22 Cylinder surface pressures on coarsened

mesh, solid : LAURA, dashed = fluctuation split-

ting, and dotted = finite volume.
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Fig. 23 Cylinder surface heat-transfer rates,

solid ---- LAURA, dashed ---- FUN2D, and dotted

---- fluctuation splitting.
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with mesh coarsening.

Surface pressures were well predicted for the hyper-

sonic viscous cylinder, but surface heating was dis-

appointingly high for all the unstructured schemes

considered here relative to the benchmark solution.

Further testing is warranted to probe the validity

of unstructured meshes for hypersonic viscous so-

lutions. Mixed-element strategies may be a more-

appropriate course for high-Mach-number applica-

tions, with the fluctuation splitting inviscid distribu-

tion assigned from an implicit triangulation in the

boundary layer.

Therefore, the upwind fluctuation splitting invis-

cid discretization is an attractive solver from subsonic

through hypersonic regimes vis a vis finite volume for a

fresh code build, but the benefits are perhaps not great

enough to justify rebuilding a legacy code. However,

when coupled with a viscous discretization the reduced

levels of artificial dissipation in fluctuation splitting

allow for coarser viscous meshes, which can lead to

significantly reduced computational requirements.
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